DOI: https://doi.org/10.3329/bjb.v54i2.80313

## EVALUATION OF SEED STORAGE POTENTIAL IN RICE LANDRACES, INDIA

## K Raja\* and D Thirusendura Selvi

Department of Seed Science and Technology, Seed Centre, Tamil Nadu Agricultural University, Coimbatore - 641 003, India.

Keywords: Rice, Landraces, Seed storage, Seedling vigour

## **Abstract**

Identifying and utilizing the superior storage potential of seeds in landraces with distinctive characteristics are crucial to withstand adverse environmental changes, seed conservation and breed a new variety. As a result, an experiment was conducted to assess the storage potential of 17 important rice landraces. The results showed that the seeds of all the landraces have maintained maximum germination (>80%) for 12 months under ambient condition except Thulasi vasanai, which retained required viability upto 11 months only. Also, Karuppu kavuni has excelled in seed storage and recoded 82% germination at 20 months and the landraces Idly (88%) and Navara (86%) had greater germination up to 18 months. Thus, Karuppu kavuni, Idly and Navara are the superior landraces remarkably with good storage potential that could be suggested for the crop improvement programme.

Seed deterioration during storage is an inevitable process that depends on the seed storage environment *viz.*, moisture, temperature, relative humidity and genetic makeup of the seed (Rao *et al.* 2006). Generally, the seed deterioration in traditional rice varieties is less than domestically cultivated varieties due to the increased antioxidant enzyme activities (Zhang *et al.* 2010). Breeders are concentrating on developing new, high-yielding cultivars to meet the growing demand for food and nutrients. Therefore, the most important requirements for rice production are the development of a high-yielding traditional medicinal rice variety and the sustainability of the seed supply system. In this context, knowledge about the storage potential of indigenous cultivars is useful in assisting researchers to maintain seed security, nutritional security and the ability to combat future climate change issues. Therefore, the current research was done on some of the significant landraces to evaluate their seed storage potential.

The traditional rice varieties were collected at farmers' locations from different regions of Tamil Nadu and raised at wetlands of Tamil Nadu Agricultural University, Coimbatore for purification and multiplication. After multiplication of varieties, the storage experiment was conducted at the Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore, India during 2020-23. The freshly harvested seeds of 17 traditional rice varieties (Table 1) were cleaned immediately after harvesting and dried to a safe moisture level of 12 percent and packed in the cloth bag. Then, the seeds were stored at ambient conditions to assess the storability of the seeds. The samples were drawn every month and evaluated for viability and vigour.

The germination test was conducted in four replicates of 100 seeds each taken at random from each variety and placed on paper medium and allowed to germinate at  $25\pm2^{\circ}$ C and  $95\pm2^{\circ}$ C relative humidity. After 14 days, the seedlings were evaluated and the germination percent was calculated (ISTA 2022). The seeds that did not produce seedlings but remained viable and fresh at the end of the germination test were categorized as fresh un-germinated seeds (FUG). Therefore, the FUG seeds were counted, calculated the mean and expressed in percentage.

<sup>\*</sup>Author for correspondence: <kraja\_sst@rediffmail.com>.

398 RAJA AND SELVI

During the germination count, ten normal seedlings were chosen at random from each replication and measured for seedling length. Then, the vigour index was calculated by multiplying germination percent with seedling length and expressed in whole number (Abdul-Baki and Anderson 1973).

According to Panse and Sukhatme (1985), the "F" test was utilized to evaluate the significance of data from the experiment. The percentage values were, if necessary, converted to angular (arc-sine) values before statistical analysis. The Standard Error Deviation (SEd) and Critical Difference (CD) were computed to compare treatment differences at 5% significance level.

Results of the present study revealed that the landraces *viz.*, Samba mosanum, Idly, Kullankar, Athur kichili samba, Navara, Karuppu kavuni, Sorna masuri, Anaikomban and Milagu samba had minimum germination (<80%) during the initial period of the test due to the existence of dormancy and the dormancy get released and recorded with higher germination in subsequent months (Table 1).

With respect to the initial germination test, the fresh ungerminated seeds or dormant seeds were also found in the majority of the landraces in addition to normal and abnormal seedling percentages. After harvest, minimum germination of less than 80% was observed in Samba mosanum, Idly, Kullankar, Athur kichili samba, Navara, Karuppu kavuni, Sorna masuri, Anai komban and Milagu samba (Table 1). Fig. 1 depicts the varieties that have more fresh ungerminated seeds due to seed dormancy for a specific period i.e. two months to 11 months and it decreases naturally during storage at ambient conditions. However, the varieties *viz.*, Illuppaipoo samba, Thulasi vasanai, Kalanamak, Seeraga samba, Mysore malli, Kuzhiyadichan, Norungan and Poovan samba have recorded more than 80 percent germination during the initial evaluation itself which showed no dormancy in it.

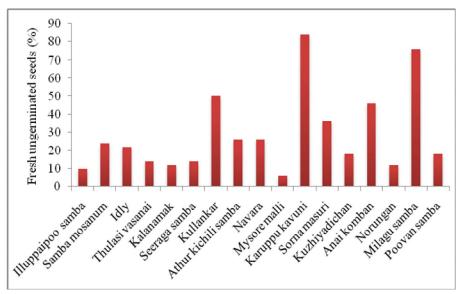



Fig. 1. Fresh ungerminated seeds during storage of rice landraces.

With respect to storage, most of the traditional rice varieties have retained their viability for nine months from the date of the initial test period and meet the prescribed standards for germination (80%). The results found that the landraces *viz.*, Illuppaipoo samba, Samba mosanum,

Table 1. Effect of storage on seed germination in rice landraces

| •                      |                  | •     | •             |        |              |     | ,        | t        | •          |         |           |        |           |            | ,            |        |           | ţ          | ,                  | Ş      | 8      |        |
|------------------------|------------------|-------|---------------|--------|--------------|-----|----------|----------|------------|---------|-----------|--------|-----------|------------|--------------|--------|-----------|------------|--------------------|--------|--------|--------|
| 1                      | Initial I<br>MAS | S M   | r S<br>W      | MAS N  | 4<br>MAS     | MAS | o<br>MAS | /<br>MAS | 8<br>MAS   | MAS     | IO<br>MAS | MAS    | 12<br>MAS | I.5<br>MAS | I4<br>MAS    | MAS    | Io<br>MAS | I./<br>MAS | I8<br>MAS          | MAS    | MAS    | ZI MAS |
| Anai komban 54         |                  | -     |               | 10.00  | 12           |     | 88       | ı        | 92         | 86      | 96        | 96     | 94        | 96         | 84           | 82     | 70        | 99         | 09                 | 46     | 56     | 10     |
|                        | 7.3) (53.1)      |       | (56.7) (5     |        | (6.49)       |     | (7.69)   |          | (73.5)     | (81.8)  | (78.4)    | (78.4) | (75.8)    | (71.5)     | (66.4)       | (64.9) | (26.7)    | (54.3)     | (50.7)             | (42.7) | (30.6) | (18.4) |
|                        |                  | _     |               |        | <u>&amp;</u> |     | 96       |          | 96         | 42      | 4         | 8      | 8         | 8          | 98           | 82     | 9         | 99         | 28                 | 46     | 0      | 0      |
| et                     |                  | _     | (71.5) (7.17) | 20     | (8.18)       |     | (78.4)   |          | (78.4)     | (75.8)  | (75.8)    | (75.8) | (71.5)    | (75.8)     | (0.89)       | (64.9) | (26.7)    | (54.3)     | (49.6)             | (42.7) | (0.0)  | (0.0)  |
| Idly 78                |                  |       |               | -      | 2            |     | 4        |          | 96         | 96      | 96        | 96     | 96        | 96         | 96           | 96     | 95        | 96         | 88                 | 81     | 89     | 4      |
|                        |                  |       |               |        | 73.5)        |     | (75.8)   |          | (78.4)     | (78.4)  | (78.4)    | (78.4) | (78.4)    | (78.4)     | (78.4)       | (78.4) | (78.4)    | (71.5)     | (69.7)             | (64.1) | (55.5) | (39.2) |
|                        |                  |       |               |        | 2            |     | 94       |          | 94         | 94      | 86        | 96     | 94        | 4          | 96           | 84     | \$        | 28         | 74                 | 25     | 36     | 4      |
| (7)                    |                  |       |               |        | 73.5)        |     | (75.8)   |          | (75.8)     | (75.8)  | (81.8)    | (78.4) | (75.8)    | (75.8)     | (71.5)       | (66.4) | (66.4)    | (62.0)     | (59.3)             | (46.1) | (36.8) | (11.5) |
|                        |                  |       |               | -      | 4            |     | 94       |          | 92         | 06      | 06        | 88     | 88        | 88         | 98           | 84     | 4         | 72         | 92                 | 20     | 0      | 0      |
|                        |                  |       |               |        | 75.8)        |     | (75.8)   |          | (73.5)     | (71.5)  | (71.5)    | (69.7) | (69.7)    | (7.69)     | (0.89)       | (66.4) | (59.3)    | (58.0)     | (56.7)             | (45.0) | (0.0)  | (0.0)  |
| Karuppukavuni 16       |                  |       |               |        | 8            |     | 62       |          | 02         | 72      | 8/        | 82     | 06        | 06         | 4            | 96     | 100       | 96         | 6                  | 98     | 82     | 9/     |
|                        |                  |       |               |        | (9.6)        |     | (51.9)   |          | (26.7)     | (58.0)  | (62.0)    | (64.9) | (71.5)    | (71.5)     | (75.8)       | (78.4) | (89.7)    | (78.4)     | (73.5)             | (68.0) | (64.9) | (9.09) |
| Kullankar 50           |                  |       |               | -      | 0            |     | 92       |          | 96         | 86      | 86        | 86     | 94        | 8          | 96           | 88     | 28        | 74         | 99                 | 42     | 0      | 0      |
|                        |                  |       |               |        | 71.5)        |     | (73.5)   |          | (78.4)     | (81.8)  | (81.8)    | (81.8) | (75.8)    | (75.8)     | (71.5)       | (69.7) | (62.0)    | (59.3)     | (50.7)             | (40.4) | (0.0)  | (0.0)  |
| Kuzhiyadichan 82       |                  |       |               |        | 8            |     | 96       |          | 94         | 46      | 8         | 46     | 94        | 8          | 8            | 06     | 25        | 80         | 28                 | 9/     | 62     | 22     |
|                        |                  |       |               | =      | (8.18)       |     | (78.4)   |          | (75.8)     | (75.8)  | (75.8)    | (75.8) | (75.8)    | (75.8)     | (71.5)       | (71.5) | (66.4)    | (63.4)     | (62.0)             | (9.09) | (51.9) | (27.9) |
| Milagu samba 24        |                  |       |               |        | 80           |     | 89       |          | 84         | 96      | 96        | 86     | 86        | 35         | 88           | 98     | 08        | 54         | 48                 | 24     | 0      | 0      |
|                        |                  |       |               |        | (9.6)        |     | (55.5)   |          | (66.4)     | (78.4)  | (78.4)    | (81.8) | (81.8)    | (73.5)     | (69.7)       | (0.89) | (63.4)    | (47.3)     | (43.8)             | (29.3) | (0.0)  | (0.0)  |
| Mysore malli 94        |                  |       |               |        | 9            |     | 100      |          | 86         | 86      | 86        | 96     | 96        | 45         | 35           | 96     | 8         | 80         | 9                  | 28     | 0      | 0      |
|                        |                  |       |               |        | 78.4)        |     | (89.7)   |          | (81.8)     | (81.8)  | (81.8)    | (78.4) | (78.4)    | (75.8)     | (73.5)       | (71.5) | (64.9)    | (63.4)     | (50.7)             | (31.9) | (0.0)  | (0.0)  |
| Navara 74              |                  |       |               | -      | 90           |     | 96       |          | 86         | 100     | 86        | 86     | 86        | 86         | 86           | 86     | 8         | 06         | 98                 | 74     | 62     | 10     |
|                        |                  |       |               |        | 78.4)        |     | (78.4)   |          | (81.8)     | (89.7)  | (81.8)    | (81.8) | (81.8)    | (81.8)     | (81.8)       | (81.8) | (75.8)    | (71.5)     | (0.89)             | (59.3) | (51.9) | (18.4) |
| Norungan 88            |                  |       |               |        | 94           |     | 96       |          | 96         | 96      | 96        | 86     | 96        | 96         | 94           | 46     | 25        | 06         | 74                 | 34     | 0      | 0      |
|                        |                  |       |               |        | 78.4)        |     | (78.4)   |          | (78.4)     | (78.4)  | (78.4)    | (81.8) | (78.4)    | (78.4)     | (75.8)       | (75.8) | (73.5)    | (71.5)     | (59.3)             | (35.7) | (0.0)  | (0.0)  |
| oovan samba 82         |                  |       |               |        | 0            |     | 8        |          | 92         | 4       | 86        | 96     | 4         | 8          | 93           | 8      | \$        | 78         | 54                 | 56     | 0      | 0      |
|                        | (64.9) (64.9)    |       | (68.0)        |        | 71.5)        |     | (71.5)   |          | (73.5)     | (75.8)  | (81.8)    | (78.4) | (75.8)    | (75.8)     | (74.6)       | (71.5) | (66.4)    | (62.0)     | (47.3)             | (30.6) | (0.0)  | (0.0)  |
| samba mosanum /6       |                  |       |               |        | 7.           |     | 4        |          | <u>ج</u> ا | 100     | 8         | 9      | 4         | 3          | 90           | 84     | 4         | 7/         | <b>z</b>           | 76     | 07     | 0 !    |
|                        |                  |       |               |        | 73.5)        |     | (75.8)   |          | (78.4)     | (89.7)  | (81.8)    | (78.4) | (75.8)    | (71.5)     | (08.0)       | (66.4) | (59.3)    | (28.0)     | (53.1)             | (46.1) | (26.5) | (0.0)  |
| Seeraga samba 86       |                  |       |               |        | 2 2 2        |     | 4 6      |          | 9 8        | 86      | 9 8       | ¥ 6    | 4 6       | 3 8        | 3 8          | 88     | × 5       | 8/         | 90                 | 6<br>6 | 25     | 77     |
| Corns magnini 64       | (7.60) (0.0<br>1 |       |               | 51 100 | (0.0)        |     | (0.57)   |          | (+°.4)     | (o.1.o) | 6,0       | (o.c.) | (0.5/)    | (C.1.)     | (C-1/2)      | (2.6)  | 70        | (0.20)     | (c. <del>†</del> 2 | 34     | 4:40   | (20.7) |
|                        |                  |       |               |        | 68.0         |     | (73.5)   |          | (75.8)     | (78.4)  | (78.4)    | (78.4) | (75.8)    | (64.9)     | (63.4)       | (0 (9) | (56.7)    | 615)       | (47.3)             | 35.7   | 041)   | (14.1) |
| Thulasi vasanai 86     | 06               |       | 95 98         | 1000   | و            |     | 6        |          | 88         | 8       | 98        | 82     | 28        | 78/        | 26           | 89     | · %       | 62         | 20                 | 22     | 0.00   | 0      |
| (9)                    | 8.0) (71.        |       |               |        | 78.4)        |     | (75.8)   |          | (69.7)     | (69.7)  | (0.89)    | (64.9) | (62.0)    | (62.0)     | (9.09)       | (55.5) | (55.5)    | (51.9)     | (45.0)             | (27.9) |        | (0.0)  |
| Mean 71                | 78               | 83    | 83 86         |        | , 6          |     | 91       |          | 92         | 8       | 8         | 8      | 93        | 91         | 68           | 87     | 81        | 92         | 99                 | 48     | 23     | =      |
|                        | (57.4) (62.      | 9) (0 | (9) (9:59)    |        | (9.07        |     | (72.5)   |          | (73.5)     | (75.8)  | (75.8)    | (75.8) | (74.6)    | (72.5)     | (9.07)       | (8.89) | (64.1)    | (9.09)     | (54.3)             | (43.8) | (28.6) | (19.3) |
|                        | arieties (V)     |       |               |        |              |     | Storage  | 0        | £          |         |           |        |           |            | S×N          |        |           |            |                    |        |        |        |
| SEG<br>CD (P=0.05) 1.4 | 0.73<br>1.44     |       |               |        |              |     | 1.59     |          |            |         |           |        |           |            | 5.44<br>6.77 |        |           |            |                    |        |        |        |

Table 2. Effect of seed storage on vigour index in rice landraces.

| Varieties           | Vigour index  | index |                             |       |       |      |       |                    |                         |         |               |        |        |        |               |        |               |      |        |        |        |        |
|---------------------|---------------|-------|-----------------------------|-------|-------|------|-------|--------------------|-------------------------|---------|---------------|--------|--------|--------|---------------|--------|---------------|------|--------|--------|--------|--------|
|                     | Initial       | -     | MAS 2 MAS 3 MAS 4 MAS 5 MAS | 3 MAS | 4 MAS |      | 5 MAS | 7 MAS              | 6 MAS 7 MAS 8 MAS 9 MAS |         | 10 MAS 11 MAS |        | 12 MAS | 13 MAS | 14 MAS 15 MAS | 15 MAS | 16 MAS 17 MAS |      | 18 MAS | 19 MAS | 20 MAS | 21 MAS |
| Anaikomban          | 1411          | 1715  | 6161                        | 2053  | 2283  | 2359 | 2502  | 2553 2             | 2653 29                 | 2992 29 | 2977 3        | 3130   | 3374   | 3426   | 2811          | 2619   | 2005          | 1696 | 1452   | 1028   | 475    | 181    |
| Athur kichili samba | 1658          | 6161  | 2147                        | 2255  | 2357  | 2421 | 2322  | 2372 2             | 2414 23                 | 2372 2: | 2576 2        | 2678   | 5619   | 2751   | 2476          | 9661   | 1672          | 1508 | 1256   | 298    | 0      | 0      |
| Idly                | 2204          | 2471  | 2892                        | 2595  | 2708  | 2781 | 2907  | 2880 3             | 3145 32                 | 3211 33 | 3373 3        | 3440   | 3607   | 3759   | 3533          | 3422   | 3428          | 3463 | 3229   | 2689   | 1709   | 608    |
| Illuppaipoo samba   | 2187          | 2477  | 2603                        | 2592  | 2589  | 2575 | 2673  | 2680 2             | 2862 29                 | 2926 29 | 2902 2        | 2623   | 2533   | 2479   | 2511          | 2206   | 2268          | 2070 | 1950   | 1122   | 623    | 64     |
| Kalanamak           | 1906          | 2190  | 2377                        | 2462  | 2443  | 2468 | 2397  | 2374 2             | 2456 23                 | 2305 27 | 2704 2        | 2530   | 3406   | 3318   | 2976          | 2325   | 1794          | 1707 | 1596   | 1054   | 0      | 0      |
| Karuppukavuni       | 393           | 852   | 966                         | 1230  | 1587  | 1688 | 1774  | 1 689 1            | 1994 21                 | 2161 24 | 2441 2        | 2764   | 3010   | 2964   | 3196          | 3422   | 3751          | 3590 | 3280   | 2786   | 2225   | 1872   |
| Kullankar           | 1274          | 1744  | 2252                        | 2439  | 2665  | 2759 | 2838  | 2939 3             | 3288 35                 | 3518 3. | 3394 3        | 3438   | 3130   | 2942   | 2732          | 2640   | 2200          | 1980 | 1309   | 728    | 0      | 0      |
| Kuzhiyadichan       | 2229          | 2516  | 2698                        | 2871  | 2970  | 3009 | 2914  | 2818 2             | 2670 26                 | 2659 20 | 2664 2        | 2710 2 | 2581   | 2524   | 2262          | 2270   | 2090          | 1964 | 1866   | 1749   | 1335   | 404    |
| Milagu samba        | 265           | 856   | 1121                        | 1270  | 1505  | 1677 | 1865  | 2020 2             | 2501 30                 | 3043 3  | 3130 3        | 3352 3 | 3363   | 2907   | 2693          | 2073   | 1836          | 1185 | 806    | 364    | 0      | 0      |
| Mysore malli        | 2814          | 2995  | 3024                        | 3102  | 3072  | 3102 | 3146  | 3112 3             | 3077 29                 | 2982 29 | 2952 2        | 2801   | 2731   | 2585   | 2479          | 2423   | 1951          | 1784 | 1180   | 398    | 0      | 0      |
| Navara              | 1615          | 1740  | 2070                        | 2213  | 2412  | 2458 | 2704  | 2813 2             | 2876 29                 | 2940 29 | 2945 2        | 2852 2 | 2774   | 2774   | 2477          | 2444   | 2343          | 2231 | 2041   | 1666   | 1325   | 195    |
| Norungan            | 2422          | 2542  | 2645                        | 2820  | 3110  | 3145 | 3121  | 2991 2             | 2993 30                 | 3069 29 | 2989 2        | 2868   | 2774   | 2702   | 2571          | 2543   | 2433          | 2173 | 1694   | 969    | 0      | 0      |
| Poovan samba        | 2342          | 2349  | 2485                        | 2543  | 2641  | 2571 | 2501  | 2790 2             | 2995 31                 | 3130 33 | 3308 3        | 3216   | 3054   | 2641   | 2065          | 1958   | 1798          | 1598 | 975    | 382    | 0      | 0      |
| Samba mosanum       | 2096          | 2550  | 2741                        | 2675  | 2757  | 2650 | 2631  | 2602               | 3053 30                 | 3065 29 | 2994 2        | 2924   | 2838   | 2670   | 2402          | 2257   | 1713          | 1546 | 1328   | 1043   | 304    | 0      |
| Seeraga samba       | 1767          | 1924  | 2022                        | 2061  | 2136  | 2181 | 2117  | 2053 2             | 2194 21                 | 2192 2  | 2184 2        | 2301   | 2279   | 2141   | 2173          | 2219   | 1860          | 1802 | 1469   | 858    | 356    | 145    |
| Sorna masuri        | 1490          | 1554  | 1757                        | 2070  | 2249  | 2397 | 2566  | 2620 2             | 2725 30                 | 3055 29 | 2928 2        | 2850 2 | 2703   | 2295   | 2184          | 2001   | 1691          | 1406 | 1137   | 615    | 84     | 62     |
| Thulasi vasanai     | 2087          | 2249  | 2390                        | 2612  | 2616  | 2380 | 2237  | 2047               | 1910                    | 1747 20 | 2051 1        | 1918   | 1778   | 2241   | 2073          | 1596   | 1356          | 1166 | 910    | 311    | 0      | 0      |
| Mean                | 1817          | 2067  | 2253                        | 2364  | 2481  | 2500 | 2542  | 2547 2             | 2681 27                 | 2769 28 | 2845 2        | 2838   | 2850   | 2761   | 2552          | 2363   | 2112          | 1919 | 1605   | 1072   | 495    | 217    |
|                     | Varieties (V) | s (V) |                             |       |       |      | •     | Storage period (S) | riod (S)                |         |               |        |        |        | ××            | S      |               |      |        |        |        |        |
| SEd                 | 19.87         |       |                             |       |       |      |       | 21.97              |                         |         |               |        |        |        | 93.23         | 23     |               |      |        |        |        |        |
| CD (P=0.05)         | 39.08         |       |                             |       |       |      | ,     | 43.20              |                         |         |               |        |        |        | 18:           | 183.30 |               |      |        |        |        |        |

Kalanamak, Seeraga samba, Kullankar, Athur kichili samba, Mysore malli, Sorna masuri, Kuzhiyadichan, Anaikomban, Norungan, Milagu samba and Poovan samba have maintained their germination of above 80 % upto 14 to 17 months (Table 1). However, seeds of the variety Thulasi vasanai exhibited a declining trend in germination from the ninth month onwards and maintained their minimum standards of germination for up to 11 months (82%) only. Remarkably, certain varieties performed well in storage such as Idly (88%), Navara (86%) and Karuppu kavuni (92%) which showed maximal germination after 18 months of storage under ambient conditions. Among these three, Karuppu kavuni maintained 82 % germination up to 20 months.

The vigour index of the traditional rice varieties gets reduced with the increase in storage period. Initially, the vigour index was lesser due to the presence of dormancy in the seeds which leads to poor germination and seedling growth. Subsequently, the vigour index increases with the advancement of the storage period and after a certain period of storage, it starts declining due to the reduction in seed germination and seedling length (Table 2). This might be owing to the deterioration of seeds and loss of enzyme activities in the seeds. The deterioration leads to loss of cellular integrity and leaching out of the metabolites present in the seed.

It is concluded that the landraces *viz.*, Karuppu kavuni, Idly and Navara have remarkably performed well in storage which exhibited minimum standards of germination (80%) upto 18 months under ambient storage conditions. Therefore, these good storer varieties can be used in the breeding programme for further development of new varieties with better storability.

## References

Abdul-Baki AA and Anderson JD 1973. Vigour determination in soybean by multiple criteria. Crop Sci. 13: 630-633.

ISTA 2022. International Rules for Seed Testing. International Seed Testing Association, Bassorsdorf, Switzerland. pp.24-32.

Panse VG and Sukhatme PV 1985. Statistical methods for agricultural workers, Indian Council of Agricultural Research, New Delhi. pp. 87-89.

Rao RGS, Singh PM and Mathura Rai 2006. Storability of onion seeds and effects of packaging and storage conditions on viability and vigour. Sci. Hortic. 110(1): 1-6.

Zhang, Ming Wei, Rui Feng Zhang, Fang Xuan Zhang and Rui Hai Liu 2010. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. J. Agric. Food Chem. **58**(13): 7580-7587.

(Manuscript received on 30 November, 2024; revised on 27 February, 2025)